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Degradation of misfolded proteins in neurodegenerative
diseases: therapeutic targets and strategies

Aaron Ciechanover1,2 and Yong Tae Kwon1

Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system

(UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS,

in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the

narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be

delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can

be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal

hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality

control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known

proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant

misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative

diseases such as Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD), prion diseases and Amyotrophic

Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the

UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in

neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic

proteins from degenerating neurons.

Experimental & Molecular Medicine (2015) 47, e147; doi:10.1038/emm.2014.117; published online 13 March 2015

INTRODUCTION

Misfolded proteins generated in various cellular compartments,
including the cytoplasm, nucleus and endoplasmic reticulum
(ER), are efficiently removed by quality control systems
composed of the ubiquitin (Ub)-proteasome system (UPS),
chaperone mediated autophagy (CMA) and macroautophagy
(Figure 1).1 The first line of defense in degrading soluble
misfolded proteins is the UPS (Figure 2), a selective proteolytic
system in which substrates are tagged with Ub, unfolded into
nascent polypeptide chains, and cleaved into short peptides
while passing through the narrow chamber of the
proteasome.1–4 Specific misfolded proteins that expose the
KFERQ degradation signal can be degraded by the CMA, a
branch of the autophagy-lysosome system (hereafter autop-
hagy), in which substrates are selectively recognized by the
chaperone heat-shock cognate 70 (Hsc70) and directly deliv-
ered into lysosomes, leading to degradation by lysosomal
hydrolases into amino acids (Figure 1).5,6 Some misfolded

proteins that escape the surveillance of the UPS and CMA or
tend to form aggregates are directed to macroautophagy
(Figure 1), a bulk degradation system in which substrates are
segregated into autophagosomes which, in turn, are fused with
lysosomes for degradation into amino acids (Figure 3).7,8

Although almost all of the proteins encoded by the human
genome can be efficiently removed from the cell when
misfolded, a number of polypeptides generated from post-
translational conjugation (for example, hyperphosphorylated
tau in Alzheimer’s disease (AD)) or endoproteolytic cleavage
(for example, amyloid β peptides) tend to be spontaneously
misfolded and rapidly aggregated into oligomers enriched in β-
sheet content.9–12 Genetic mutations in specific proteins, such
as huntingtin in Huntington’s disease (HD),13,14 α-synuclein in
Parkinson’s disease (PD),15,16 prion protein (PrP) in prion
diseases,17–19 and superoxide dismutase 1 (SOD1) and TAR
DNA-binding protein 43 kDa (TDP-43) in Amyotrophic Lat-
eral Sclerosis (ALS),20 may also perturb their folding, leading to
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the formation of similar β-sheet-enriched aggregates. The
resulting oligomers are at least partially resistant to all known
proteolytic pathways and can further grow into inclusion
bodies or extracellular plaques that have highly ordered fibrillar
structures with elevated β-sheet content.9 Cytotoxicity and
neuronal death caused by misfolded oligomers and aggregates
provide a molecular mechanism underlying the pathogenesis of
many neurodegenerative diseases.21

Compared with proliferating cells, post-mitotic neurons are
more sensitive to the accumulation of cytotoxic proteins

because they cannot dilute toxic substances by means of cell
division.22 Moreover, protein quality control is intrinsically
challenging in neurons because of their unique cellular
structure, characterized by the expansion of dendrites and
axons in which protein aggregates need to be packaged into
autophagic vacuoles and make a retrograde journey to the cell
body, rich in lysosomes, for degradation.23,24 Although young
neurons can manage to clear cytotoxic proteins, this task
becomes increasingly more difficult throughout the course of
aging during which the components of the UPS, CMA and

Figure 1 The degradation of short-lived proteins by the UPS. In this selective proteolytic system, Ub is first activated by E1 and
subsequently transferred to E2. In parallel, misfolded substrates of the UPS are recognized by molecular chaperones, such as CHIP, and
associated with Ub ligases that promote the transfer of E2-conjugated Ub to specific Lys residues of substrates. Ubiquitinated substrates
are deubiquitinated, unfolded, fed into the narrow chamber of the proteasome, and progressively cleaved into small peptides. Depending
on the types of E3 ligases, Ub can be directly transferred from E2 to the substrate or via a two-step process that involves a transient
binding of E3 to Ub. The repetition of this reaction results in the growth of a singly conjugated Ub to a chain of Ub with different
topologies, depending on how Ub is conjugated to another Ub. Modified from Wang and Robbins.226

Figure 2 Autophagosome formation and lysosomal degradation. Autophagosome formation can be triggered when the mTOR complex is
inhibited by various stressors, such as starvation. This induces the assembly of the ULK protein complex composed of ULK1, Atg13 and
FIP200 at the isolation membrane, which, in turn, activates the formation of the Beclin-1/PI3KC3 complex composed of Beclin-1, UVRAG,
Bif-1, Ambra1, Vps15 and Vps34. During the elongation of the isolation membrane, the Atg5-Atg12-Atg16L1 complex mediates the
conjugation of PE to LC3-I, generating LC3-II that relocates from the cytosol to the autophagic membrane and is anchored on its surface.
The resulting autophagic membrane structures—autophagosomes—are fused with lysosomes to form autolysosomes, wherein cargoes,
including misfolded proteins, are degraded by lysosomal hydrolases.
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macroautophagy are downregulated in expression and
activity.25,26 In the affected neurons of many neurodegenerative
diseases, such as AD, PD, HD, prion diseases and ALS,
pathogenic protein aggregates can further downregulate the
activities of proteolytic pathways.27–32 One way to enhance
degradation of pathogenic protein aggregates is to increase the
activities of proteolytic pathways. Many small molecule com-
pounds have been developed and successfully used to enhance
the clearance of various pathogenic proteins.33–38

THE UPS IN NEURODEGENERATIVE DISEASES

The UPS is a proteolytic system in which the conjugation of Ub
to substrates induces selective degradation by the proteasome
(Figure 2).39 Protein degradation in the UPS is mediated by an
enzymatic cascade composed of ~ 500–1000 proteins. In this
ATP-consuming proteolytic system, Ub is first activated by
forming a thioester bond between its C-terminal Gly76 residue
and an active-site cysteine (Cys) of the Ub-activating enzyme
E1. The activated Ub is transferred to the Ub-conjugating
enzyme E2 via a thioester bond. It is the Ub ligase E3 that
selectively recognizes and mediates ubiquitination of substrates,

which involves the transfer of E2-conjugated Ub to lysine (Lys)
residue(s) of the target substrate. The human genome is
estimated to encode 4500 E3 ligases, which can be classified
into three groups depending on the types of ubiquitination
domains, including the really interesting new gene (RING)
finger, the homologous to E6-AP (HECT) domain and the
U-box domain.40 An E3 Ub ligase can be a single polypeptide
or a subunit of a protein complex, such as the SCF (Skp1-
Cullin1-F-box) E3 complex. As Ub conjugation may occur at
any of its seven Lys residues, a Ub chain can grow into many
different topologies.41 The Lys48 linkage is the most widely
used topology, which signals degradation by the proteasome,
whereas the Lys63 linkage mediates non-proteolytic processes,
such as Ub-dependent protein–protein interactions.42 The
Lys11 linkage is typically used for cell-cycle regulation and cell
division.43 Ub moieties on protein substrates can be removed
by the deubiquitination enzyme to edit elongating chains
or remove/recycle the targeted chains altogether from
substrates.44,45

Once ubiquitination generates a chain of four or more Ub at
lysine 48, it can serve as a secondary degron that delivers the

Figure 3 The degradation of misfolded proteins by various cellular proteolytic pathways. Misfolded proteins are initially recognized by
molecular chaperones that deliver the substrates to the UPS, CMA or macroautophagy depending on the nature of misfolding, size and
solubility. In general, soluble and monomeric misfolded proteins are primarily degraded by the UPS and CMA. In CMA, substrates carrying
the KFERQ motif are recognized and bound by Hsc70 in association with chaperones. The substrates are subsequently delivered to the
LAMP2 complex on the lysosomal membrane, translocated to the lumen, and degraded into amino acids by lysosomal hydrolases. Some of
these misfolded proteins tend to form aggregates and are thus directed to macroautophagy. Misfolded protein substrates of
macroautophagy are recognized by molecular chaperones such as Hsc70, ubiquitinated by Ub ligases, and delivered to the autophagic
adaptor p62, leading to the formation of p62 protein bodies. The targeted protein aggregates associated with p62 are subsequently
delivered to autophagic membranes for lysosomal degradation, when p62 interacts with LC3 on the autophagic membrane.
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substrates to the 26S proteasome. This cylindrical machinery is
composed of a proteolytic 20S core particle capped at both
ends by a 19S regulatory particle.46–48 The 19S particle binds
and unfolds the polyubiquitinated protein substrate and feeds
the unfolded polypeptide chain into the chamber of the 20S
particle, which is as narrow as 13 angstroms in diameter.47,48

When feeding the substrates into the 20S particle, the 19S
particle also deubiquitinates the polyubiquitinated substrates to
recycle Ub. Passing through the 20S particle, the substrates are
cleaved into small peptides by the β5, β2 and β1 subunits that
have chymotrypsin-like, trypsin-like and caspase-like peptidase
activities, respectively.47,48

Substrates of the UPS include misfolded proteins, as well as a
large number of short-lived proteins in the cytoplasm, nucleus,
ER and other cellular compartments. The UPS-dependent
degradation of misfolded proteins initiates when chaperones
and Ub ligases recognize abnormalities in folding, such as
hydrophobic residues exposed on the surface and improper
disulfide bonds.49 Several E3s are known to mediate the
ubiquitination of misfolded proteins. In the yeast Saccharo-
myces cerevisiae, the RING finger E3 ligase Ubr1, the recogni-
tion component of the N-end rule pathway, cooperates with
chaperones to mediate the ubiquitination of misfolded cyto-
solic proteins for degradation by the proteasome.50,51 The yeast
Ub ligase San1 mediates the ubiquitination of misfolded
proteins in the nucleus.52 With the help of heat-shock protein
70 (Hsp70), San1 also brings excessive cytosolic misfolded
proteins to the nucleus for proteasomal degradation.51,53 The
yeast HECT Ub ligase Hul5 was recently found to mediate the
ubiquitination of misfolded proteins generated by heat shock.54

In mammals, the U-box-containing E3 ligase CHIP is known
to interact with Hsp70 and promote the delivery of misfolded
cytosolic proteins to cellular degradation machinery.55 Little is
known about the mammalian Ub ligases involved in quality
control of misfolded proteins in neurons.

The pathogenesis of many neurodegenerative diseases,
including AD, PD, ALS, HD and prion diseases, is associated
with and, moreover, at least partly contributed by the down-
regulation of the UPS.56,57 One major risk factor underlying
reduced UPS activities in degenerating brains is aging. Exten-
sive studies have shown that proteasomal activities can
gradually decrease with aging, which results in a reduced
capacity to degrade misfolded proteins, contributing to the
formation of pathological protein aggregates.27–29,31 Another
risk factor is the presence of aggregated proteins that inhibit the
activities of UPS components, including the proteasome. For
example, aggregated β-sheet-rich PrP blocks the opening of the
20S proteasome particle, leading to reduced proteasomal
activity.58 Ubiquitinated and aggregated tau in AD can block
the gate of the 19S catalytic particle by binding to its
recognition site, leading to a traffic jam and impaired
proteasomal degradation.30,32 In addition, recent studies have
shown that aggregates of many other pathogenic proteins in
neurodegenerative disorders can directly inhibit proteasome
activity.59–62

THE AUTOPHAGY-LYSOSOME SYSTEM IN

NEURODEGENERATIVE DISEASES

Autophagy is a process by which cytoplasmic constituents are
degraded by the lysosome. Protein quality control via autop-
hagy is particularly important for the timely removal of
aggregated forms of pathogenic proteins in neurodegenerative
diseases, including tau in AD, α-synuclein in PD and
polyQ-Htt in HD.63,64 Autophagy can be divided into micro-
autophagy, CMA and macroautophagy, depending on the
mechanism by which cellular cargoes are delivered to the
lysosome (Figure 1).65 Among the three arms of autophagy, the
targeted clearance of misfolded proteins is mainly mediated by
CMA and macroautophagy. CMA is a selective proteolytic
system in which specific misfolded proteins carrying the
KFERQ motif are delivered to and degraded in lysosomes.
This pentapeptide motif, found in ~ 30% of cytosolic proteins,
is normally buried by protein folding, but it can be exposed on
the surface by misfolding or partial unfolding. It is recognized
by the chaperone Hsc70 associated with cochaperones.6 The
substrates are subsequently delivered to the CMA adaptor
(lysosomal membrane-associated protein 2A (LAMP-2A) on
the lysosomal membrane, unfolded, translocated into
the lysosomal lumen and degraded into amino acids. In
degenerating neurons, CMA can be constitutively activated to
compensate for impaired macroautophagy.66

In macroautophagy, a portion of cytoplasmic constituents,
such as misfolded proteins and organelles, are segregated by
double-membrane structures called autophagosomes and sub-
sequently digested by lysosomal hydrolases (Figure 1). The
delivery of misfolded proteins to autophagosomes involves
specific adaptors, including the p62/SQSTM-1/sequestosome.67

The autophagic adaptor p62 has a UBA (Ub association)
domain that interacts with polyubiquitin chains of misfolded
proteins and a PB1 domain that mediates self-aggregation to
form condensed cargo-p62 complexes.68–70 Cargo-loaded p62
and its aggregated complexes are delivered to autophagic
vacuoles through the specific interaction of p62 with light
chain 3 II (LC3-II), an active form of LC3, on the surface of
autophagic double membrane structures.71 By inducing aggre-
gation and eventually delivery to autophagic vacuoles, p62
reduces the toxicity of a free form or oligomeric species of
misfolded proteins destined for macroautophagy.72 Mutations
in the p62 gene have been implicated in the pathogenesis of
Paget disease of bone as well as familial and sporadic ALS.73 In
addition to p62, other autophagic adaptors, such as NBR1,
NDP52, optineurin (OPTN), histone deacetylase 6 and NIX26,
mediate the delivery of various types of cellular cargoes to
autophagic membranes through similar mechanisms.74,75 Once
misfolded proteins are loaded to phagophores, the autophagic
membrane structures are fused with each other to grow into
autophagosomes, which are fused in turn with lysosomes,
generating autolysosomes in which cargoes are degraded by
lysosomal hydrolases. Autophagosome formation involves a
large number of proteins and their post-translational modifica-
tions, such as the ATG7-mediated conjugation of ATG5
(autophagy-related protein 5) to ATG12, leading to cleavage
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and lipidation of LC3-I to form LC3-II (Figure 3).7,76,77 Upon
conversion, cytosolic LC3-II is translocated to autophagic
membranes and acts as an anchor to receive cargoes through
interaction with autophagic adaptors.

Although misfolded proteins can be immediately and
directly delivered to autophagosomes, excess misfolded or
damaged proteins and their aggregates that accumulate beyond
cellular capacity are temporarily stored in the aggresome, a
cytoplasmic inclusion in the microtubule organizing center
near the nucleus.9 During this process, called aggrephagy, the
histone deacetylase 6, in association with molecular chaper-
ones, binds freely floating ubiquitinated aggregates and delivers
them via microtubules to a location that minimizes their
toxicity until they are finally degraded by the UPS or
macroautophagy.78–81 The major components of aggresomes
include ubiquitinated proteins as well as specific regulatory
proteins involved in the formation and degradation of proteins
aggregates, such as p62, ALFY (autophagy-linked FYVE
protein) and NBR1 (neighbor of BRCA1 gene).

The functions and survival of neurons heavily depend on the
efficient removal of misfolded proteins by autophagy because
they cannot dilute cytotoxic proteins by cell division. In
addition, autophagy is an intrinsically challenging process in
neurons because of their unique cellular structure characterized
by the expansion of dendrites and axons. For example,
misfolded proteins that have been generated in axons and
nerve terminals are packaged on site into autophagosomes and
make a long retrograde journey to the cell body, wherein
lysosomes are enriched in the perinuclear microtubule-
organizing center.22 Before reaching the cell body, autophago-
somes in the process of retrograde transportation often fuse
with late endosomes generated in neurites, resulting in the
formation of amphisomes.23,24 This is a time-consuming,
difficult and complicated process whose overall efficiency
can be adversely affected by many factors, such as aging and
genetic mutations. Extensive studies have shown that
many components of CMA and macroautophagy are down-
regulated at the levels of transcription, translation and
post-translation as neurons age.25,26 These age-sensitive reg-
ulators include the substrate recognizer/carrier Hsc7082,83 and
the Hsc70-acceptor LAMP-2A in CMA84 as well as Beclin-1 in
macroautophagy.85,86 Reduced autophagic activity appears to
be pharmaceutically manageable, as the restoration of CMA by
maintaining LAMP-2A levels in aging mouse livers has been
shown to promote liver health and increase the ability of
hepatocytes to degrade damaged proteins.84 In addition to
reduced autophagic activity in aged neurons, the activities of
autophagic components can be adversely affected by interaction
with protein aggregates,87–89 which can be excessively generated
by age-dependent impairment of the UPS. For example, tau in
frontotemporal lobar dementia with Ub-positive inclusions and
α-synuclein in PD bind LAMP-2A with an unusually high
affinity, leading to a traffic jam during cargo translocation
across the lysosomal membrane.89 Yet another risk factor
underlying dysregulation of autophagy in aged neurons is a
genetic mutation in a regulator of autophagy, such as p62,

whose mutations are implicated in the pathogenesis of familial
and sporadic ALS32, characterized by p62-positive inclusions in
affected neurons.90

PROTEIN QUALITY CONTROL IN AD: AΒ AND TAU

AD is the most common form of progressive dementia,
characterized by cognitive impairment, memory loss and
behavioral abnormalities. This protein misfolding disorder is
caused by the misfolding and aggregation of amyloid β peptides
and tau, which give rise to amyloid plaques and neurofibrillary
tangles, respectively.91 Aβ is a 42-residue product resulting
from two sequential cleavages of the amyloid precursor protein
(APP), a transmembrane protein with no clearly defined
function. The first cleavage produces a C-terminal fragment,
and the fragment is then cleaved by the γ-secretase complex
composed of presenilin-1, APH-1, PEN-2 and nicastrin92 to
generate Aβ, which tends to be misfolded to form
aggregates.10,11 Mutations of various genes, including APP,
can upregulate the production of Aβ, contributing to the
pathogenesis of AD.10,11 By contrast, APP and Aβ can be
downregulated by the UPS at various steps of processing, from
the ER lumen to the plasma membrane.93 The first UPS
degradation occurs after a nascent APP polypeptide is cotran-
slationally translocated into the ER lumen, during which its
signal peptide is cleaved off. Following translocation, a success-
fully folded APP mature protein enters the Golgi secretory
pathway. However, terminally misfolded APP is degraded via
ER-associated degradation in which substrates are unfolded,
ubiquitinated, retrotranslocated across the ER membrane and
degraded by the proteasome. The targeting by ER-associated
degradation involves the E3 Ub ligases HRD194 and Fbxo2.95

Proteasomal degradation can also occur when APP arrives at
the Golgi apparatus, where APP is ubiquitinated though a K63
linkage by unknown E3 ligases stimulated by ubiquilin-1,
leading to the retention of APP without proteasomal
degradation.96 Even after being presented at the plasma
membrane, APP can be internalized to endosomes and enter
the endosome-Golgi pathway, where APP can be cleaved to
generate Aβ.97 The resulting intracellular Aβ is prone to
misfolding and is targeted by UPS-dependent protein quality
control, which includes the E3 ligase CHIP that mediates
the ubiquitination of misfolded proteins for proteasomal
degradation.93 In contrast to APPs, however, Ub-conjugated
Aβ in affected neurons is not properly degraded through the
proteasome.98

Recent studies have implicated autophagy in the turnover of
Aβ. In an AD mouse model overexpressing Aβ, haploinsuffi-
ciency of Beclin-1 reduced autophagy and exacerbated AD
pathology, as evidenced by Aβ deposition and neurodegenera-
tion, which was rescued by lentiviral administration of
Beclin-1.99 Conditional mutant mice lacking ATG7 in the
central nervous system showed degeneration of pyramidal
neurons in the hippocampus and Purkinje cells in the
cerebellum.100 Genetic inactivation of other autophagic com-
ponents in neurons, such as ATG5 or ATG17/FIP200, resulted
in similar neuronal degeneration.25,101 While the turnover of
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Aβ involves autophagy, autophagy itself is impaired in the
brains of AD patients. For example, affected neurons in AD
brains are enriched in autophagosomes and other types of
autophagic vacuoles that together act as a major intracellular
reservoir of cytotoxic peptides.102 The excessive accumulation
of immature autophagic vacuoles in senile neurons is associated
with increased synthesis of autophagic core components,
retrograde transportation of autophagosomes and impaired
fusion with lysosomes, contributing to the accumulation of
pathogenic Aβ.103,104

Another hallmark of AD is neurofibrillary tangles composed
primarily of phosphorylated tau.105 Although neurofibrillary
tangles were initially thought to be one of the major causes of
AD pathogenesis,106 recent studies indicate that a monomeric
form of tau with pathological modifications and its soluble
oligomers may be more cytotoxic.12 The tau protein can lose its
function through various proteolytic events, including cleavage
by endoproteolytic enzymes such as caspases,107 calpain,108

aminopeptidases109 and thrombin.110 However, these cleavages
are unlikely to contribute to the clearance of neurofibrillary
tangles because the resulting cleavage products with various
modifications may aid the development of AD. The first line of
defense against tau accumulation is the E3 ligase CHIP, which
mediates the ubiquitination of tau (primarily in its phosphory-
lated form), in collaboration with Hsp70 and Hsp90
(Figure 4).111 An in vitro study showed that the E2 enzyme
Ube2w can also mediate E3-independent ubiquitination of
tau.112 However, ubiquitinated tau is not a good substrate of

the proteasome and thus accumulates as detergent-resistant
aggregates, leading to the formation of neurofibrillary tangles in
AD. In the process of targeting tau to the proteasome, CHIP
also appears to be deposited to neurofibrillary tangles with its
substrate and other ubiquitinated proteins.98,111 It has been
shown that UPS-dependent clearance of tau is facilitated by
overexpressing the molecular chaperone Hsp70, which binds
misfolded proteins.111 As UPS-dependent degradation of tau is
not efficient, autophagy has a close relationship with AD
pathogenesis with respect to the formation of amyloid plaques
and tau aggregates.113 For example, autophagic inhibition by
3-methylamphetamine or cloroquine was shown to slow tau
clearance, leading to tau aggregation.114 By contrast, rapamy-
cin, an inducer of autophagy, inhibited the accumulation of tau
aggregates and neurotocixity using a mouse tau model.37

Pharmaceutical inhibition of phospholipase D1, which regu-
lates autophagosome maturation downstream of Vps34,
resulted in neuronal accumulation of tau and p62
aggregates.115 A subpopulation of caspase-generated tau frag-
ments has been shown to be delivered to autophagic
vacuoles.116 Defective autophagic flux promotes the formation
of tau oligomers and insoluble aggregates. A phosphorylated
form of tau shows reduced binding to microtubules and
bundling as well as an increased tendency to be found as motile
particles.117

PROTEIN QUALITY SYSTEM IN PD: Α-SYNUCLEIN
PD is the most common neurodegenerative movement dis-
order. It is characterized by decreased motor ability and the

Figure 4 The degradation of tau proteins. Tau can be targeted by both the UPS and macroautophagy, depending on the nature of post-
translational modifications that influence folding and solubility. In general, soluble monomeric tau proteins are recognized by molecular
chaperones and Ub ligases, such as CHIP, leading to the formation of ubiquitinated tau proteins. It remains unclear as to what extent
ubiquitinated tau proteins are actually degraded by the proteasome. Alternatively, the same substrates can be directly delivered to the 20S
proteasome without ubiquitination. Some tau proteins prone to rapid aggregation, such as hyperphosphorylated species, can be delivered to
p62 and, subsequently, autophagosomes for lysosomal degradation. Modified from Chesser et al.227
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loss of dopaminergic neurons in the substantia nigra pars
compacta. The major pathogenic agent of PD is a mutant form
of α-synuclein, a presynaptic nerve terminal protein.118 The
activity of mutant α-synuclein as an autosomal dominant cause
for PD is associated with point mutations (for example, A53T,
A30P and E46K) that render α-synuclein prone to misfolding
and aggregation.119–121 The accumulation of aggregated mutant
α-synuclein leads to the formation of intracellular inclusions
called Lewy bodies (LBs), which serve as the major hallmarks
of both sporadic and familial PD. In addition to mutant α-
synuclein, LBs contain more than 90 proteins, including PD
markers (DJ-1, LRRK2 (leucine-rich repeat kinase 2), Parkin
and PINK-1 (PTEN-induced putative kinase 1)) and
mitochondria-related proteins, as well as components of the
UPS and autophagy, particularly those involved in aggresome
formation.122–124 Consistent with the finding that many of the
proteins accumulated in LBs are involved in protein quality
control, major causative mutations in familial PD are linked to
genes in the UPS or autophagic pathways, including α-
synuclein, PINK-1, the Ub ligase Parkin, UCH-L1 (Ub carboxy
terminal hydrolase L1), DJ-1 (PARK7) and LRRK2/PRAK8.122

In the pathogenesis of PD, monomeric and non-fibrillar
mutant α-synuclein molecules may be more cytotoxic than
fibrillar aggregates, and LBs found in the brains of PD patients
may be a consequence of cytoprotective responses.122–124

Wild-type α-synuclein has been shown to be ubiquitinated
and degraded by the proteasome using in vitro assays89,125,126

and cultured neuronal cells under proteasomal
inhibition.127,128,129 However, other studies have suggested that
ubiquitination is not needed for proteasomal degradation
of α-synuclein (Figure 5).130,131 Proteasomal degradation of
α-synuclein has been shown to be facilitated by its phospho-
rylation at Ser129.132 Several regulatory proteins of the UPS
were implicated in the turnover of soluble α-synuclein in the
cytosol, including Ub ligases CHIP,133 SIAH,134,135 MDM2136

and HRD1.137 A subpopulation of α-synuclein associated with
membranes in the endosome-lysosome pathway has been
shown to be targeted by the Ub ligase Nedd4.138 In addition
to Ub ligases, rare mutations in the deubiquitinating enzyme
UCH-L1 have been associated with familial, early onset PD.139

PD-linked mutants of UCH-L1 contain only partial deubiqui-
tinating activities, contributing to the accumulation of α-
synuclein in presynaptic terminals.140 The role of UCH-L1 in
PD pathogenesis is in part attributed to its activity as an E3
ligase, whereby it mediates K63-linked ubiquitination in its
dimer form.141 The overall importance of the UPS in the
turnover of α-synuclein is further supported by the finding that
conditional knockout mice lacking Psmc1, a proteasomal
subunit, in nigral or forebrain neurons resulted in the
formation of intraneuronal LB-like inclusions positive for Ub
and α-synuclein associated with neurodegeneration.142 While
soluble α-synuclein is degraded by the proteasome, its fila-
mentous form can interact directly with the 20S core of the
proteasome and decrease its proteolytic activity.61 Consistently,

Figure 5 The degradation of α-synuclein by cellular protein quality control. Wild-type and mutant α-synuclein can be targeted by the
ubiquitination-dependent UPS (A) and possibly in a manner independent from Ub (B) as well. Monomeric α-synuclein can also be targeted
by the CMA (C). By contrast, macroautophagy can degrade monomeric and oligomeric α-synuclein as well as its aggregates (D).
Intracellular α-synuclein can also be cleaved by endopeptidases, such as calpains (E) and neurosin (F). Extracellular α-synuclein can be
cleaved by neurosin (G) and metalloproteinases (H). The resulting proteolytic cleavage products are thought to contribute to the cytotoxicity
of α-synuclein. Modified from Xilouri et al.228
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proteasome misregulation has been observed in the substantia
nigra of PD patients.143

Recent studies have shown that α-synuclein can be degraded
by CMA through a specific CMA recognition motif.89,144

However, the A30P and A53T PD-linked mutants have
unusually high affinity for the CMA adaptor LAMP-2A and
are not efficiently delivered to the lysosomal lumen, resulting in
a traffic jam in CMA.89,145 This, in turn, can trigger compen-
sating macroautophagy.146 The hydrolysis of CMA-targeted α-
synuclein in the lysosomal lumen involves cathepsin D, a
primary lysosomal protease.147,148 Although α-synuclein in a
monomeric or soluble oligomeric form can be targeted by both
the UPS and the CMA, its aggregates are directed to the
lysosome via macroautophagy. The role of macroautophagy in
α-synuclein degradation was suggested by the finding that α-
synuclein is accumulated in the lysosome of cultured neuronal
cells under macroautophagic inhibition, whereas the lysosomal
targeting of PD-linked mutant α-synuclein was attenuated
under the same conditions.33,149 Pharmacological activation
of macroautophagy using rapamycin, a mammalian target of
rapamycin (mTOR) inhibitor, facilitated the degradation of
both wild-type and mutant α-synuclein.138,150 The clearance of
α-synuclein by macroautophagy was further shown in trans-
genic mice virally overexpressing Beclin-1, an autophagic
regulator.150

PROTEIN QUALITY CONTROL IN HD: MUTANT

HUNTINGTIN PROTEINS

HD is an autosomal dominant neurodegenerative disorder that
affects ~ 5–10 individuals per 100 000.151 Affected individuals
suffer from progressive motor and cognitive declines associated
with loss of self and spatial awareness, depression, dementia
and increased anxiety. This progressive neurodegenerative
disease is caused by the aggregation of mutant huntingtin
(mHTT) proteins. The wild-type huntingtin protein (HTT)
contains a stretch of the glutamine residue, called polyQ tract,
which is encoded by a repeat of the codon CAG within exon 1
of the HTT gene.152,153 The length of the CAG repeat varies
between individuals and generations, ranging on average
between 16 and 20 repeats.154 In affected individuals, the
CAG repeat expands to 435 in number, giving rise to the
elongated polyQ tract of mHTT proteins that are prone to
aggregation and toxic to neurons.14,155 PolyQ inclusions are
abundant in highly ordered amyloid fibers with enriched β-
sheets and low detergent solubility.156 PolyQ inclusions may be
a consequence of a protective mechanism to sequester small
oligomeric forms of mHTT, which are highly cytotoxic to
neurons.157 Extracellular polyQ aggregates can be internalized
by cells to initiate a new round of polyQ aggregation,
suggesting that mHTT may act as an infectious agent through
a mechanism observed in prion diseases.158

Despite the importance of mHTT in the pathogenesis of HD,
surprisingly little is known about the mechanism by which
cytotoxic mHTT is removed from the cell. This is perhaps
because mHTT is a poor substrate for all known proteolytic
pathways, including UPS, CMA, and macroautophagy.

Moreover, extensive studies have shown that mHTT acts as
an inhibitor of proteolytic machineries, often in the process of
its turnover.159 For example, mHTT inclusions in the brains of
HD patients and HD mice are enriched in the components of
the UPS, such as Ub and ubiquitinated HTT, because mHTT
species can be initially tagged with Ub but are poor substrates
for the proteasome.160 It has been suggested that the accumu-
lation of mHTT inclusions is not a consequence of direct
proteasomal inhibition but rather result from the gross failure
of protein quality control systems in association with the
sequestration of molecular chaperones.161

Wild-type HTT can be degraded by CMA,162 during which
Hsc70 recognizes two KFERQ-like motifs, KDRVN at residues
99–103 and NEIKV at residues 248–252.159 Like HTT, mHTT
can also be recognized by Hsc70 for CMA degradation.159

However, the polyQ expansion of mHTT delays the delivery
of mHTT across the lysosomal membrane because mHTT has
a higher affinity for Hsc70 and LAMP-2A.159 Failure to
promptly deliver the initially targeted mHTT to the lysosome
results in a traffic jam in CMA-dependent autophagic degrada-
tion, leading to a secondary side effect in proteostasis. Failure
to degrade mHTT results in the accumulation of perinuclear
cytoplasmic aggregates and intranuclear inclusions in the
neurons of patients with HD.162

Core components of macroautophagy, such as LC3, are
typically upregulated in various HD mouse models and in
neuronal and non-neuronal cells in patients with HD.163,164

The apparent upregulation of macroautophagy is associated
with the excessive formation of cargo-free autophagic vacuoles,
possibly because the delivery of cargoes to autophagic vacuoles
is impaired.163 As the autophagic flux is reduced, components
of macroautophagy, such as p62, LC3-II, mTOR and Beclin-1,
were found to be deposited in the striatum of HD transgenic
mice.165 The sequestration of autophagic regulators in mHTT
inclusions, such as mTOR, contributes to the increased
synthesis of autophagic core components.85,166 Thus, HD
disease progression is exacerbated by reduced activities of
macroautophagy associated with HTT inhibition of macro-
autophagy in an age-dependent manner.

PROTEIN QUALITY CONTROL IN PRION DISEASES:

SCRAPIE PRION PROTEIN

Prion diseases, also known as transmissible spongiform ence-
phalopathies, are infectious neurodegenerative disorders in
humans and animals that affect the brain and nervous system,
leading to spongiform vacuolation and severe neuronal loss.167

Prion diseases in animals include nature scrapie in sheep and
goat,168 bovine spongiform encephalopathy (also known as
mad cow disease) in cattle,169 chronic wasting disease in elk
and deer,170 and feline spongiform encephalopathy in domestic
cats.171 In humans, these fatal protein misfolding disorders
include kuru172, Creutzfeldt–Jakob disease173, Gerstmann–
Sträussler–Scheinker syndrome174, fatal familial insomnia175

and new variant CJD (a human equivalent to bovine spongi-
form encephalopathy/mad cow disease).167
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The transmissible agent common to these transmissible
diseases is scrapie prion protein (PrPSc), an abnormally
misfolded isoform of the host-encoded cellular prion protein
(PrPC).18 PrPC is a glycosylphosphatidyl inositol-linked glyco-
protein enriched in α-helical structure. This cell surface protein
with no clearly defined function is initially translated as a 253-
residue polypeptide and enters the ER wherein its signal
peptide is cleaved off, generating a 208-residue mature protein.
The mature PrPC polypeptide undergoes folding and is
conjugated with sugar moieties during transportation via the
Golgi-secretory pathway. In this process, a soluble form of
misfolded PrPC is normally degraded by various protein quality
control systems, including Ub-dependent ER-associated degra-
dation. Compared with PrPC, however, PrPSc is enriched in β-
sheets and tends to form aggregates that are at least partially
resistant to all known cellular protein quality control
systems.17–19 Moreover, PrPSc can interact with PrPC and
facilitate the conversion of PrPC into PrPSc, which, in turn,
can convert more PrPC into PrPSc, resulting in the accumula-
tion of misfolded and aggregated PrPSc in the brain.176–178

Through this seeding-nucleation process, a small quantity of
invading PrPSc is enough to trigger the autocatalytic conversion
of host PrPC into PrPSc.179,180 The transmissible nature of PrPSc

has been demonstrated by the finding that the inoculation of
small quantities of PrPSc into animals led to characteristics of
prion diseases.177,178

Compared with the clinical importance of PrPSc, surprisingly
little is known of its turnover. In principle, as the conversion of
PrPC into PrPSc requires significant refolding and conforma-
tional changes in folding, this process may involve chaperones
and Ub ligases of UPS-dependent protein quality control.
Indeed, recent studies in S. cerevisiae suggest that Hsp70,
Hsp40 and Hsp26 may loosen prion fibrils, whereas Hsp104
fully disassembles the fibrils into shorter fragments.181 In
mammalian cells, the chaperones GroEL and Hsp104 were
shown to facilitate the conversion of PrPC into PrPSc in the
presence of a small amount of PrPSc that served as a seed.182 In
addition, Hsc70, a recognition component of CMA, was shown
to bind to PrPC.183 Despite the implication of chaperones in
the turnover of PrPC, it appears that PrPSc is not a good
substrate of the UPS. Moreover, recent studies have shown that
PrPSc binds to the 20S proteasome without further processing
and thus blocks substrate entry into the proteolytic chamber,
leading to proteasomal failure.62,184 PrPSc may also bind to the
external surface of the 20S particle and induce an allosteric
stabilization of the closed state of the 20S proteasome.58,185

Consistent with these findings, prion diseases are associated
with impaired activities of the UPS.185 As a consequence of
proteasomal inhibition, cellular Ub conjugates are excessively
accumulated in mouse brain infected with ME7 scrapie
train.185

Prion diseases are associated with misregulation of auto-
phagy as evidenced by the formation of giant autophagic
vacuoles in experimental scrapie in hamsters.186 These autop-
hagic vacuoles often grow in size and number as neurons age,
eventually occupying the entire volume of the affected

neurites.187 The formation of giant autophagic vacuoles is
caused by the reduced flux of autophagy in combination with
endosomal/lysosomal dysfunction, which may contribute to the
pathogenesis of prion diseases.187 Although a study showed
that recombinant PrPC mutants (V203I, E211Q and Q212P)
overexpressed in neuroblastoma cells were converted to PrPSc-
like aggregates and delivered to aggresomes,188 there is no
evidence that PrPSc is efficiently processed by autophagic
pathways. Instead, recent studies indicate that prion proteins
adversely affect autophagy, as exemplified by the finding that
the overexpression of a PrPC-like protein, Doppel (Dpl), in
neurons resulted in the progressive death of Purkinje cells in
prion-lacking Ngsk mice.189 As further described in the
following sections, one way to facilitate the clearance of PrPSc

is to use small molecules that stimulate autophagy.35,190,191

PROTEIN QUALITY CONTROL IN ALS: SOD AND TDP-43

ALS is a progressive paralytic disease characterized by selective
degeneration and death of motor neurons associated with the
accumulation of misfolded proteins and insoluble inclusions.20

Although indistinguishable in clinical symptoms, this protein
misfolding disorder can be divided into sporadic ALS, which
accounts for ~ 82% of all ALS cases, and familial ALS.20

Mutations in ALS may occur in genes encoding key compo-
nents of protein quality control. This group of mutant ALS
proteins includes dynein and dynactin, both involved in the
retrograde transport of autophagosomes from axons to the cell
body,192,193 the autophagic adaptor p62,73 and the UBA-
containing proteins Ubqln2 and Optineurin.194 Another group
of ALS mutations generates proteins with abnormal folding,
leading to aggregation and the formation of insoluble
inclusions.20 This latter group includes SOD1, TDP-43, and
FUS/TLS (Fused in Sarcoma/Translocated in Sarcoma).20,195

Approximately 20% of familial ALS cases are caused by over
140 different point mutations of SOD1, a soluble cytosolic
enzyme that dismutates superoxide radicals to H2O2.

196 SOD1
mutants are mostly dominant and causative to the death of
affected motor neurons because they tend to be misfolded and
form protease-resistant aggregates.195 Another ASL-relevant
gene is TDP-43, in which mutations account for ~ 5% of
sporadic ALS and 3% of familial ALS cases.20 This hnRNP
family member can bind to RNA in a single-stranded and
sequence-specific manner, which is required for many RNA
processes.197 One unique aspect of TDP-43 is the property of
its C-terminal tail to be prone to misfolding and
aggregation.197,198 Like other pathogenic mutant proteins in
neurodegenerative diseases, misfolded SOD1 and TDP-43
mutants are initially targeted for degradation by the compo-
nents of the UPS, such as chaperones and Ub ligases.20 Owing
to their tendency to aggregate, however, the targeted mutants
escape during the delivery process to the proteasome, some of
which are redirected to autophagy. ALS mutants resistant to the
UPS and autophagy are aggregated together to form intracel-
lular inclusions containing Ub and Ub ligases found in familial
ALS mutant mice199,200 and post-mortem spinal cord of
sporadic ALS patients.201–203 It was reported that the insoluble
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inclusions typically become visible in the brain stem and spinal
cord at the onset of ALS symptoms and progressively accu-
mulate throughout late stages.204 Although large inclusions are
clinical hallmarks of ALS symptoms, they are unlikely to be
toxic to neurons. They may, however, be a neuroprotective
phenomenon, as it was suggested that monomeric and
oligomeric misfolded ALS proteins are the actual toxic sub-
stance in motor neurons.195

Autophagy is often misregulated in the spinal cord of
sporadic ALS patients, as evidenced by the excessive formation
of autophagosomes.205 The autophagic misregulation can be
partially explained by findings stating that inclusions observed
in ALS patients can impair protein quality controls by
sequestering various components ranging from proteasomal
subunits and Ub ligases, such as Dorfin, to molecular
chaperones HSP70 and HSP40 and the motor protein dynein
involved in cargo delivery to the aggresome.5,206,207 Monomeric
or oligomeric ALS proteins can also directly inhibit both
proteasomal activity197,198,208,209 and autophagic flux.210–212

Moreover, it has been shown that reduced proteasomal activity
can promote the accumulation of ALS protein aggregates.213

Thus, one mechanism underlying the pathogenesis of ALS
is a vicious cycle between misfolded proteins and proteolytic
pathways, which accelerates the excessive accumulation of
insoluble inclusions, leading to the death of affected motor
neurons.

TARGETING AUTOPHAGY FOR THERAPY OF

NEURODEGENERATIVE DISEASES

Substantial benefits of therapy could be achieved with agents
that promote the degradation of pathogenic proteins under-
lying neurodegenerative diseases. Many small molecules that
induce autophagy have been developed and shown to be
effective in removing pathogenic proteins. The therapeutic
activities of the autophagic inducer rapamycin, an inhibitor of
mTOR, have been demonstrated using transgenic mouse
models of neurodegenerative diseases, such as AD mice
expressing mutant APP,36,38 AD mice expressing tau,37 HD
mice expressing mHTT,214 PD mice expressing mutant α-
synuclein33 and prion disease mice expressing PrPSc.35 The
overall results indicate that rapamycin promotes the clearance
of these pathogenic protein aggregates, improves cognition and
behavior and ameliorates neuropathology and neurodegenera-
tion in the brains of these transgenic mouse models. Similar
therapeutic benefits were obtained using analogs of rapamycin,
such as CCI-779, which was shown to reduce mHTT aggre-
gates, leading to improved motor behaviors in HD transgenic
mice.215 In contrast, rapamycin worsened autophagic functions
and neuron degeneration in a SOD1(G93A) transgenic mouse
model of ALS212 and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-
idine (MPTP) neurotoxin models of PD,216 suggesting that
autophagic induction may exert adverse effects on certain
neurodegenerative conditions.

Various autophagic inducers were exploited to enhance
the clearance of pathogenic protein aggregates in neuro-
degenerative diseases by targeting the ULK1 kinase AMP-

activated protein kinase (AMPK) or cAMP–inositol 1,4,5-
trisphosphate.13 An mTOR-independent macroautophagy
inducer, Rilmenidine, was shown to improve motor ability
and the clearance of mHTT fragment in transgenic HD
mice.217 The mood stabilizer lithium, known to inhibit inositol
monophosphatase and the phosphoinositol cycle, promoted
the degradation of various protein aggregates including PrPSc of
prion disease,191 mHTT of HD, α-synuclein of PD218 and
SOD1 G93A of ALS.219,220 Trehalose is a natural disaccharide
product with pharmacological chaperone activity that exerts a
protective role against various environmental stresses.221 This
mTOR-independent autophagy activator was shown to
enhance the clearance of mHTT in cultured cells, reduce the
toxicity of mHTT and improve motor ability and lifespan in
transgenic HD mice.221,222 Trehalose promoted the clearance of
A30P and A53T α-synuclein mutants in cultured PD model
cells.221 The natural flavone finsetin and related compounds
that activate autophagy through both target of rapamycin
complex 1 (TORC1) and AMPK activities showed protective
effects in neurodegenerative models.223 Protein phosphatase 2A
agonists that inhibit tau hyperphosphorylation and activate
autophagy through TORC1 and AMPK are under clinical trials
for AD.224 Not surprisingly, a synergistic effect was obtained
when rapamycin and Trehalose were combined to remove
pathogenic protein aggregates of HD and PD.221 The combina-
tion of rapamycin and the IMPase inhibitor lithium was also
shown to reduce the toxicity of mHTT.34 These results suggest
that the combination therapy based on an mTOR inhibitor and
an mTOR-independent activator may need to be further
exploited for therapeutic application, although off-target effects
are expected to increase. Collectively, these studies demon-
strated that autophagic inducers have potential as therapeutic
agents for selected neurodegenerative diseases. The overall
effects of these reagents on a broad range of biological
processes in neurons and non-neuronal cells require further
investigation.

CONCLUDING REMARKS

It is estimated that there will be two billion people over the age
of 60 by 2050. One common biochemical mechanism under-
lying most neurodegenerative disorders is the failure of protein
quality control to degrade or remove misfolded proteins in the
brains of aged persons. The disease-causing misfolded proteins
are generated over the course of aging by post-translational
modifications (for example, endoproteolytic cleaves and phos-
phorylation) of native proteins (for example, amyloid β and tau
in AD) or genetic mutations of otherwise non-pathogenic
proteins (for example, HTT in HD, α-synuclein in PD, PrPC in
prion disease and SOD1 and TDP-43 in ALS). These patho-
genic agents tend to aggregate into oligomers with enriched β-
sheet content, which can further grow into fibrillar inclusion
bodies or extracellular plaques, serving as clinical hallmarks of
many neurodegenerative diseases. β-Sheet-enriched aggregates
can impair—either directly or indirectly—the UPS as well as
CMA and macroautophagy by interacting with various cellular
molecules, including key components of proteolytic pathways.
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This results in the reduced ability of protein quality control,
which further accelerates the accumulation of cytotoxic aggre-
gates. This exacerbating cycle between misfolded proteins and
protein quality control is particularly toxic to aged neurons as
the ability of these post-mitotic cells to cope with such
difficulties is naturally reduced over the course of aging. As a
consequence of these unfortunate events, neurodegenerative
diseases are typically associated with global failures of all
proteolytic pathways.

A significant portion of cellular proteins is misfolded during
translation/folding or while functioning as folded proteins,
either spontaneously or under cellular stresses. Most abnor-
mally folded cellular proteins in the human proteome can be
efficiently removed through the cooperative work of the UPS,
CMA and macroautophagy. In contrast, the aforementioned
pathogenic proteins are commonly resistant to those proteo-
lytic pathways, perhaps because their β-sheet-enriched folds are
difficult for molecular chaperones to loosen up. These sub-
strates, without being fully unfolded, cannot be properly fed
into the proteasomal cylinder, may be stuck within the narrow
cylinder of the proteasome, or may not readily dissociate from
the components (for example, LAMP-2) of CMA while being
delivered across the lysosomal membrane. One strategy to
enhance the clearance of pathogenic proteins is to enhance the
activities or levels of molecular chaperones engaged in the UPS,
as demonstrated by a study in which the overexpression of the
molecular chaperone Hsp70 accelerated the proteasomal
degradation of tau.111 Another strategy is to activate the
molecular chaperones (for example, Hsc70), carriers (for
example, histone deacetylase 6) and/or adaptors (for example,
LAMP-2) of CMA, as a few studies have shown that the
augmentation of CMA enhanced the removal of pathogenic
misfolded proteins.8,159,225 One common limitation of the UPS
and CMA is that substrates should be at least partially or
completely unfolded into nascent polypeptides before they are
fed into the proteasome or lysosome. By contrast, the
degradation by macroautophagy does not involve an ATP-
dependent unfolding step, making this lysosomal proteolysis an
ideal quality control system for aggregation-prone misfolded
proteins. In addition, although autophagic flux is often reduced
in affected neurons in most neurodegenerative diseases, the
functions of core autophagic machinery appear to remain
largely intact, as several studies have shown that the alteration
of autophagic regulators such as mTOR fully restored the
autophagic flux. As such, many small molecule compounds
were developed to induce macroautophagy and demonstrated
to enhance the clearance of cytotoxic protein aggregates. As the
mTOR pathway is emerging as a promising drug target, known
mTOR-dependent autophagic inducers were successfully used
to enhance the clearance of various pathogenic protein
aggregates, improve cognition and behavior, and ameliorate
neurodegeneration in the brains of various transgenic mouse
models. Other regulators of autophagy, such as the ULK1
kinase AMPK, are also being actively exploited as potential
drug targets, with synergistic effects between rapamycin and an
mTOR-independent autophagic inducer. Although it is

increasingly clear that autophagy inducers have therapeutic
potential to remove protein aggregates, it should be noted that
most of these studies use transgenic mice overexpressing
pathogenic proteins that have already formed high levels of
insoluble inclusions. The activities of these compounds on a
broad range of biological processes, including off-target effects,
should be further investigated under more physiologically
relevant conditions.
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